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In this article we propose a model of spin-vibronic relaxation in Kg[V'V15As6042(H,0)]-8H,0, the so called
V5 cluster exhibiting the unique layered structure. The work is motivated by the recent observation of
the Rabi oscillation [1] in this system and aimed to elucidate the nature of the relaxation processes.
The model assumes that the spin-phonon coupling arises as a result of modulation of the isotropic and

antisymmetric (Dzyaloshinsky-Moriya) exchange interactions in the central triangular layer of vanadium
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ions by the acoustic lattice vibrations. Within the pseudo-angular momentum representation the selec-
tion rules for the direct (one-phonon) transitions between Zeeman levels are derived and a special role of
the antisymmetric exchange is underlined. The relaxation times related to one-phonon transitions in dif-
ferent ranges of the field are estimated within the Debye model for the lattice vibrations.
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1. Introduction

During last two decades the fundamental discoveries of Achim
Miiller in polyoxometalate chemistry led to unprecedented pro-
gress in this field including fascinating applications to single mol-
ecule magnetism, biophysics and nanomaterials science. Design
and study of new nanoscopic objects possessing both beauty and
intriguing properties facilitated a new development of fundamen-
tal issues of nanophysics (see a comprehensive book [2]). About 20
years ago one of us (B.Ts.) started to collaborate with Achim Miiller
on magnetic mixed valence polyoxometalates [3,4]. Last years this
fruitful and pleasant collaboration got a new impact under the aus-
pices of the German-Israel Science foundation [1,5-13] and was fo-
cused mainly on the study of famous V5 cluster synthesized in
Bielefeld. In this article written in honor of Achim Miiller we pro-
pose a model of spin-phonon relaxation and evaluate the probabil-
ity of one-phonon processes in the low lying magnetic sublevels in
V5. The work is motivated by the recent observation of the Rabi
oscillations in this system [1] and aimed to elucidate the role of
spin-phonon relaxation as a possible mechanism of decoherence.

The unique cluster anion present in Kg[V"V15As604,(H-0)]-8H,0
containing fifteen V'V ions (S; = 1/2) and exhibiting the unique lay-
ered structure was discovered two decades ago [14] and pioneer
studies of this system dates back to this period [14-17]. The syn-
thesis of this fascinating spin frustrated cluster opened a new trend
in molecular magnetism closely related to the promising field of
single molecule magnets that is expected to give a revolutionary
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impact on the design of new memory storage devices of molecular
size and quantum computing [2].

The molecular cluster V;5 has a distinct layered quasi-spherical
structure [14,15]. Fifteen V'V ions (S; = 1/2) are placed in a large
central triangle sandwiched by two distorted hexagons possessing
overall D3 symmetry (Fig. 1).

Studies of the adiabatic magnetization and quantum dynamics
show that the V5 cluster exhibits the hysteresis loop of magneti-
zation [18-23] and can be referred to as a mesoscopic system on
the border line between the classical and quantum world. The
studies of the static magnetic susceptibility [16,17], energy pattern
[24-32], ab initio electronic structure calculations [33-37] and
inelastic neutron scattering (INS) [38,39] showed that the low lying
part of the energy spectrum is well isolated from the remaining
spin levels and can be understood as a result of interaction be-
tween three moieties consisting of five strongly coupled spins giv-
ing rise to spin S; = 1/2 of each moiety. The studies of V15 cluster are
reviewed in Ref. [40].

A novel route to employ the properties of molecular magnets is
a spin-based implementation of quantum information processing
that is expected to provide a development in the problem of quan-
tum computing [1,41-53]. The key question formulated in Ref. [41]
is: “will decoherence times in molecular magnets permit quantum
information processing?” First prediction of the coherent states in
V15 has been made in Ref. [54] where it was explicitly stated:
“...quantum coherence in a V;5 molecule is not suppressed and,
in principle, can be detected experimentally.” In fact, recent obser-
vation and interpretation of the Rabi oscillation in V5 have been
reported in Ref. [1]. In Ref. [54] different mechanisms of decoher-
ence have been discussed and in particular a general estimation


http://dx.doi.org/10.1016/j.ica.2010.07.080
mailto:tsuker@bgu.ac.il
http://dx.doi.org/10.1016/j.ica.2010.07.080
http://www.sciencedirect.com/science/journal/00201693
http://www.elsevier.com/locate/ica

4362 A. Tarantul, B. Tsukerblat/Inorganica Chimica Acta 363 (2010) 4361-4367

Fig. 1. Ball-and-stick representation the cluster anion [V'V;5As04,(H,0)]®~ empha-
sizing the V; triangle (the central water molecule is not indicated) [14].

of the order of magnitude of spin-phonon relaxation times has
been made. In this article we propose a microscopic approach to
the evaluation of the rates of the direct (one-phonon) spin lattice
relaxation based on the accurate consideration of the spin states
and Zeeman levels of V5 and a simple Debye model for the lattice
vibrations. In the subsequent studies this model will be extended
and employed for a more general studies of phonon-assisted pro-
cesses in molecular magnets, including two-phonon and Orbach-
type transitions.

2. Triangle model for V5 cluster

The model of spin triangle for the low lying spin excitations
suggested in Refs. [16,20] includes isotropic Heisenberg-Dirac-
Van Vleck (HDVV) exchange interaction and antisymmetric (AS)
exchange proposed by Dzyaloshinsky [55] and Moriya [56] as an
origin of spin canting in magnetic materials (see Refs. [18-20]).
The last interaction was shown [57,58] to be especially important
for the spin frustrated system possessing triangular structure. A
model of an effective spin triangle [16,17] of vanadium ions
(§=1/2) that provides an adequate description of the whole sys-
tem at low temperatures when the spin of hexagons are paired
due to relatively strong antiferromagnetic interactions while the
coupling inside the triangle is relatively small. This vanadium tri-
angle that is a central magnetic layer in the V5 structure is shaded
in Fig. 1. Three spins of the central triangle are coupled through the
antiferromagnetic isotropic exchange. The full Hamiltonian of the
system looks as:

H = Hy + Has = 2J(818S + S,S; +S3S])+2Dij[5i ij} (1)
ij

The eigen-values of the Hamiltonian H, with the antiferromagnetic
(J > 0) coupling includes two levels, namely “accidentally” degener-
ate spin doublets (ground level) and excited spin quadruplet sepa-
rated by the gap 3J. According to the overall point symmetry D3 the
vector constants Dj; (ij = 12,23, 31 numerate the sides) of the AS ex-
change have, in general, three independent components, namely,
along and perpendicular to the side (in plane of the triangle) and
perpendicular to the plane component whose absolute values are
respectively D, D; and D,. Consequently the Hamiltonian Has can
be divided into two parts, Has(||) (“normal”) and Has(L) (“in-plane”)
which are defined as:

HAS(H) ZDH([S] XSz}Z‘I’[Sz ><S3]Z+[S3 XS]]Z) (2)

1 3 1
HAS(L) = D[ ([S] X SQ]X — E[SQ X S3}X +§[Sz X S3]Y — 5[53 X Sl]x

,?[53 X s]}y) + D ([sl X Sz]y *?[SZ X 53]X
—%[52 x Ssly +?[53 Xsl]x—%[sa XSl]y) 3)

where the axes X and Y of the global coordinates system are direc-
ted as shown in Fig. 2 while the axis Z is perpendicular to the plane
(right-hand coordinate system). These two parts of the AS exchange
are explicitly separated as they play quite different physical roles.
The normal part of AS exchange splits the ground doublets (the
splitting being /3D,) and gives rise to a strong (first order)
magnetic anisotropy while the in-plane part is responsible for the
doublet-quadruplet mixing. This mixing leads to a second order
zero-field splitting of the S =3/2 level (that is (D} + D?)/8]). It was
shown [5] that D, and D, are combined into an effective parameter

D, = /D? + D? so the model is fully specified by the three param-
eters J, D, and D, . The parameter J is found to be about 0.85 cm™!
[4] and recent estimation based on the low temperature magnetiza-
tion data [19] provides the following AS exchange constants:
D, =024cm™', D, =0.08cm™! [57,58].

3. Spin-phonon interaction

The interaction of spins with the lattice vibrations (heat reser-
voir) arises from the modulation of the isotropic and AS exchange
interactions by the molecular displacements X;, Y;, Z; (i=1,2,3
enumerates the ions) in course of the lattice vibrations [59-61].
It is convenient to deal with the symmetry adapted coordinates
Q,, (o enumerates the vibrational mode) of the equilateral triangu-
lar unit: full symmetric A;(Q,, = Q4) and double degenerate E type
(Qex = Q4 Qgy = Q). These normal coordinates can be expressed in
terms of the Cartesian displacements X;, Y;, Z; of the constituent

o
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Fig. 2. Vibrational coordinates of a symmetric triangular unit exchange.
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ions as shown in Fig. 2. Within this mechanism of spin-phonon
(vibronic) interaction the exchange parameters are assumed to
be the functions of the metal-metal distances R; so that the linear
(with respect to the displacements) terms of the vibronic Hamilto-
nian H,, can be represented as a sum of two contributions
He, = H,, + H.,,, where H,, and H,, are the contributions of the iso-
tropic and AS parts of the exchange Hamiltonian respectively. They
can be written as:

/ O0Ho
H,, = ( ) Q,, 4
a;‘y 9Qs/ g, 4)
" (9HA5>
Heu = Q,. 5
a:A%\y<an 0,20 (5)

After substitution of the corresponding parts of the exchange Ham-
iltonian one obtains the following expressions for the spin-phonon
coupling operators:

8Jf-(Rif)>

H,, = 28:S; | — o, (6)

‘ XIJ: u;y 1 j( OR;j AR;=0 aro

H,, = S,‘ x §; - 7
“ ; a;,y ]< OR;j AR;j=0 onc Qx @

where R; are the instant metal-metal distances in course of the
vibrations while AR; =0 corresponds to the equilibrium trigonal
configuration and symmetric exchange network with the sides Ry
Modulation of the isotropic exchange can be described by the
parameter / which is defined as / = v/6(9J;(Ry)9R;. For each side
of the triangle there is also a vector coupling parameter which is re-
lated to the AS exchange and defined as g; = (9D;;(R;) /0R;;),. Due to
the trigonal symmetry of the system the absolute values of these
three vector parameters have the same value p for each side of
the triangle. One can also define three components of g;, namely,
normal part f, = f3;; and two perpendicular contributions §, =
and p; = B where the symbols I and t have the same meaning as
in the definition of the AS exchange Hamiltonian. One can also de-

fine a combined vibronic parameter 8, = 1/ + 7 that appears in
the final results. Eq. (3) contains contributions related to the isotro-
pic and AS exchange interactions to the overall vibronic coupling.
After calculation of the derivatives dR;/9Q, (using the relations be-
tween the Cartesian displacements X;, Y;, Z; and normal coordinates
Q,, Fig. 2) one arrives at the following form of the spin-vibronic
Hamiltonian:

H;v = Z ;LVF”/QFV
Iy

H/e/v Zﬁwr"le""y' (8)
Iy

Hey = Z CF;‘Ql‘ys él"y = /ALVl“y + ﬁwl"y~
Iy

Here I'y = Ay, Ex, Ey label the irreducible representations and basis
functions of the D3 symmetry group and the operators Vry and
Wr«/,- are expressed in terms of the scalar and vector products of spin
operators (Appendix I). The evaluation of the vibronic matrices is
performed with the aid of the irreducible tensor operators approach
[2,60-64].

The vibronic term arising from the modulation of the AS ex-
change (H,,) can be divided into two parts (H,, = H,,(||)+H,,(L)),
namely, the part arising from the modulation of Has(||) and that
emerging from the modulation of Has(L). These two parts are de-
noted as H,,(]|) and H,, (L) respectively:

= 3 (el .

a=AXY

1" OHAS (J-)>
H,, = Iy Q.
( ) zx;y ( 8Q“ Qx=0

In order to include the interaction of spins with the acoustic lattice
vibrations, the symmetry adapted molecular displacement should
be expanded into series of the longitudinal (I) and transverse (t) lat-
tice vibrational modes q,,, specified by the wave vector x and polar-
ization v = I, t as suggested in ref. [65]:

QF;7:Z< h

My,

9)

12
) 0Ty, V=Lt (10)

In Eq. (10) q,., are the dimensionless normal coordinates of the lat-
tice, M is a mass of crystal and a,,(I'y) are the so called Van Vleck
coefficients [65] introduced in his underlying theory of paramag-
netic relaxation; their exact expressions for a triangular molecule
are given in Appendix II. The final expression for the spin-phonon
interaction is the following:

He, =S Gr, (
ev ;F,;M

It should be noted that the spin-phonon Hamiltonian in Eq. (11), is
adapted to the triangle model for Vis. In fact, by definition the
matrices Crn, in this Hamiltonian act within the set of eight spin
functions (two S = 1/2 doublets and quadruplet S = 3/2) of the vana-
dium triangle.

ho\172
) ae . an

4. One-phonon spin-lattice relaxation

Let us consider the case of two non-degenerate electronic states
|I) and |F) separated by the energy gap AE = E; — Er > 0 and a tran-
sition |I) — |F) accompanied by the release of a phonon with the
energy hw,, = AE. According to the perturbation theory the prob-
ability of this transition is the following:

2z h 5
Wiy = 7 <; (MCU;W) an\'(ry)

- 3(hyy — AE), (12)

(F|Gr |1

2 2
| (M G 1+ 1)

where (x is the Dirac § - function. After summation over the vibra-
tional modes (including thermal averaging) one arrives at the fol-
lowing expression:

1 Wo
mhp 1 —exp(—hwg/kT)

3 (e + ) ‘<F!Cryll>r~, (13)

Iy

Wi =

where hawoy = AE is the resonance phonon frequency and p is the
crystal density. Within the Debye model for the lattice vibrations
the averaged (over all directions of the phonon propagation vector
but with the fixed specified frequency w) squared Van Vleck coeffi-
cients are given in Appendix II. Substitution of these equations into
Eq. (13) leads the following result

R Lir AE\’
WISF = Thp 1= exp (—AE/KT) (W) ’ (14
21 2
Lir = [(FIGaID) < ?> |(Fl Gl (5—0?+150?>
+ |(FIGy 1D ‘ 5) (15)
l
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where v; and v, are the transverse and longitudinal sound velocities
in the crystal correspondingly. The long-wave approximation for
the acoustic phonons is assumed (kxRy << 1). The results for the
specific transitions are obtained by the due substitutions of the ele-
ments of the matrices Cr.,. They can be found with the use of the
irreducible tensor operators technique [2,60-63].

5. Selection rules for one-phonon transitions in pseudo-angular
momentum representation

The selection rules for the spin-phonon transitions can be ana-
lyzed in terms of the pseudo-angular momentum representation
employed for the analysis of the HDVV Hamiltonian and selection
rules in EPR transitions reported in V5 [8]. It was revealed that the
degeneracy doubling (“accidental” degeneracy) in the ground spin-
frustrated state (S;2)S = (0)1/2,(1)1/2 is related to the exact orbi-
tal degeneracy so that the ground term is the orbital doublet E in
the trigonal (D3) symmetry while the excited spin level S=3/2
corresponds to the orbital singlet “A,. This can be symbolically
indicated as: 2DV? = 2E, 2D®/® = 2A, where D are the irreduc-
ible representations of the rotation group R; numerating spin
states of the system. It was concluded [61] that the AS exchange
acts within the manifold (S12)S = (0)1/2,(1)1/2 like first order
spin-orbital interaction within the 2E term and gives rise to the
two doublets in agreement with the Kramers theorem [66].

By applying the symmetry operations of the D3 point group to
the basis functions [(0)1/2 +1/2) and |(1)1/2 4+ 1/2) (that gener-
ate permutations of spins in the triangle) one can find that they
are related to the x,y basis of the irreducible representation E.
Therefore their circular components [67] correspond to the projec-
tions M; = +1 and M; = —1 of the pseudo-angular momentum
(pseudo-angular momentum representation). We will use a short
notation [My, S, Ms) = upy, (S, Ms). The spin functions of the ground
manifold can be represented as:

1 (1/2,£1/2) = F1/V2((0)1/2, £1/2)il(1)1/2,£1/2)),
wa(1/2,71/2) = F1/V2(|(0)1/2 F 1/2) £ i(1)1/2, F1/2)).
(16)

Using the concept of Russell-Saunders coupling (LS) one can intro-
duce the functions Us(M;) belonging to a definite full spin S and
projections M; = M, + Ms of the full pseudo-angular momentum,
so that U;(£3/2) = Us1(1/2,£1/2 and U j2(£1/2) = Usy(F1/2)
(LSJ scheme). The orbital singlet #A, corresponds to M; =0, and
the components Ms are labeled as uo(3/2,Ms) = Us2(M;) with
Ms=+1/2 and Ms = +3/2, so that M; =+1/2 and +3/2. This
labeling is valid for the case of parallel field (H||C3) that retains
the effective axial symmetry of the system. Fig. 3 illustrates the
pseudo-angular momentum labels for the Zeeman levels of the
system at relatively low field (far enough from the crossing/anti-
crossing area) and the selection rules for one-phonon transitions.

The one-phonon transitions have special selection rules that can
be illustrated in terms of the pseudo-angular momentum repre-
sentations providing H||Cs. Although the evaluation of the relaxa-
tion times are made (Section 7) in the framework of the general
model so far suggested it is worth to underline the specific conse-
quences of different terms in spin-phonon coupling Hamiltonian.
Since the isotropic exchange is the main part of exchange interac-
tion, the vibronic coupling related to the modulation of this part of
the exchange seems to be dominant. Let us consider different tran-
sitions caused by the operator H;, when magnetic field is parallel
to the C; axis of the cluster. At low fields the normal component
Hgs(||) gives rise to a zero field splitting of two S = 1/2 levels and
there are two allowed transitions which obey the selection rules
AM; = +2, AMs = 0, AM; = +2 exist in the S = 1/2 manifold (solid
lines in Fig. 3). When the in-plane part of the AS exchange is taken

(M)
8 (-372)
(0, -3/2) (-3/2) !
0, -1/2) (-1/2)
0, +1/2) (+1/2)
(0, +3/2) (+3/2) 4 (-3/2)
5 (+1/2)
(-1,-172) (-372) 2 (+:1/2)
(+1,+1/2) (+3/2)
(+1,-172) (+1/72)
-1, +1/2) (-1/2
1 (-1/2)
3 (#3/2)

Fig. 3. Zeeman pattern of V;s, H||C;, and transitions caused by the phonon
modulation of the isotropic exchange in the presence of the parallel Hys(||) term
(solid) or in-plane Hus(L) term (dashed) in the Hamiltonian.

into account, it triggers additional transitions since both Ms and M;
are no longer “good” quantum numbers and the only selection rule
AM; = +2 remains valid. As one can see there are eight transitions
obeying this rule (Fig. 3). It also turns out that the in-plane AS ex-
change gives rise to the transitions with AM; = 0. These additional
transitions are important in the region of level anticrossing where
the role of the in-plane AS exchange is most pronounced [5].

In order to find some additional transitions that are forbidden in
the framework of the model so far discussed, let us consider tran-
sitions caused by the operator H, (||) that represents a phonon
modulation of the parallel part of AS exchange. The parallel compo-
nent Has(]|) itself is well pronounced at low fields and in this case
there are four transitions between the doublet S = 1/2 and quadru-
plet S = 3/2 with the rules AM, = £1, AMs = 0, AM; = +1 (Fig. 4).

The numerical calculations based on the full vibronic Hamilto-
nian will be given in Section 7.

6. Estimation of spin-vibronic coupling parameters

Approximate estimation of spin-vibronic coupling parameters
for Vi5 may be done from the available data regarding another

8 M‘L_O, :\4’;'3:’2, M:I =-3/2

M“E =0, M;_ =-1/2, M; =-172

M=0, M=+12, M,=+12

M=0, M=43/2, M,=*3/2

‘M.'.: -1, Mg_=-lf2, A/IJ=-3f2

M=+, M=+12, M;=+3/2
M=+1, M=-12, M,=+12

M=-1, M=+12, M=-112

Fig. 4. Transitions caused by the operator H,,(||), H||Cs.



A. Tarantul, B. Tsukerblat/Inorganica Chimica Acta 363 (2010) 4361-4367 4365

Table 1

Relaxation times and linewidths for the allowed EPR transitions at 57.9 GHz, 0.5 K, parallel field.
Transition 2 3 12 4 5 1 9
Relaxation time (s) 19x107? 24x1073 2.15x 1072 6.6 x 107> 1.1x1072 1.7 x1072 7.1 x1073
Linewidth (Tesla) 19x107° 15%x10°8 1.7x107° 55x107° 43x107° 21x107° 34x107°

Table 2

Relaxation times and linewidths for the allowed EPR transitions at 108 GHz, 0.5 K, parallel field.
Transition 10 2 8 3 5
Relaxation time (s) 58 x 107> 3x10°3 2.5 x 1072 1.9%x1073 51x1074 16x1073
Linewidth (Tesla) 3.1x107° 12x10°8 73 x 10710 19%x10°8 7.1x10°8 22x10°8

compounds. According to Ref. [68] the dependence of J on the
interatomic distance R for MnO and MnF, is well approximated
by the law

J=AR"m =~ AR, (17)

where y,, ~ 10/3 is Griineisen constant and factor A is specific for a
given compound. For the V;5 cluster one can estimate A = JoR}® (Ro
is the equilibrium metal-metal distances equal to 7A in the V'V tri-
angle, J, = 0.85cm™! is the equilibrium value of J) and thus the
spin-vibronic coupling 4 can be found as:

aJ;i .

h= Jé(ﬁ) = —10vV6AR,"" ~ —3cm /A (18)
i/ 0

Assuming that for the components of AS exchange (« = n,t,l) the

relation

1 (aD"f“) -1 <%> (19)
Dy \ ORyj )¢ Jo \OR;/,

is valid, one can deduce the following estimation: j, ~ —0.11
cm~'/A, , ~ —034cm™1/A.

Alternative estimation of / is given in ref. [59] where the ratio
(0J/OR),/] was found to be in the range 10— 30A" for the
Ir:ammonium chloroplatinate and ruby with different doping con-
centration. This estimation gives one order higher values for
2, B., B, then provided by Eq. (17) but even with this newer esti-
mation spin-vibronic interaction turns out to be very weak.

7. Estimation of the spin-phonon relaxation rates
7.1. The case of weak field

We use the values of the exchange parameters J,, D, and D,
that are given in Section 2, the spin-phonon coypling parameters
B, ~—034cm'/A, p,~—-011cm'/A Ry =7 A for the side of
the inner triangle in Vi5, p =3 - 10°kg/m3 for the density of V;s
[69]. Due to the lack of the reliable information regarding the
velocities of the sound velocities it is assumed the same values
for the transversal and longitudinal velocities v = 2 - 10° m/s. The
relaxation times for the low lying levels at 5K are found to be
T31 =T4o =1.6-103s (Fig. 3). These estimations generally
agree with the results of Ref. [54] although the estimation pre-
sented here gives shorter relaxation times for a definite set of the
levels. Of course, the accuracy of these estimations is restricted
by the uncertainty of the parameters like sound velocity and
spin-vibronic constants. One can see that the modulation of the
isotropic exchange gives much faster (two orders of magnitude)
transitions than that arising from the modulation of the normal
part of AS exchange. But it should be noted that these two mecha-
nisms of spin-phonon transitions obey different selection rules
that are expected to give essentially different phonon broadening
of EPR lines.

7.2. The case of high field

The numerical estimations based on the full spin Hamiltonian
(Ho 4+ Has) and full spin- phonon Hamiltonian (H,, + H,,) with
the values of parameters defined in Section 6. Fig. 5a and b shows
the scheme of EPR transitions (labeled as in Ref. [8]) and their
calculated intensities for temperature 0.5K and frequency of
57.9GHz that was used for the low-temperature EPR experiments
reported in [70]. The estimated relaxation times and linewidths for
the transitions at v = 57.9 GHz for which the spin-phonon relaxa-
tion is allowed by symmetry rules are given in Table 1. Although

EPR transitions, parallel field

5 = /

Energy levels ,cm™

1 L 1

L 1

0 0.5 1 15 2 25
Magnetic field , Tesla

EPR lines intensities
x10° b
: 5

0.04f 412

0.05}

0.031

Arb. units

0.02r

or \ \ ) !
0 0.5 1 1.5 2 25
Magnetic field, Tesla

Fig. 5. (a) EPR transitions for the EPR frequency of 57.9 GHz at the temperature of
0.5 K, HJ|C5. Transitions 4 and 12 occur at the same resonant field. (b) Calculated
intensities of the lines.
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EPR transitions, parallel field

T T T T T

a
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Energy levels , cm™

-2

Magnetic field , Tesla

EPR lines intensities

o
N
T
<
jat
O_‘
s
>
®

Arb. units
o

2 &
= o
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4

=)
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T

0 05 1 15 2 25 3 35 4
Magnetic field, Tesla

Fig. 6. (a) EPR transitions for 108 GHz at 0.5, H||C; .Transitions 1, 6 and 8 occur at
the same resonant field but shown with a small artificial shift for the visualization
purpose. (b) calculated intensities.

the accuracy in the numerical estimations is restricted by the
uncertainty of some parameters (like sound velocity) and approx-
imations so far employed, the interrelations between the relaxa-
tion times seem to be reliable for different EPR transitions at
different frequencies. Fig. 6 shows the transitions and their com-
parative intensities at frequency v = 108 GHz, Table 2 shows relax-
ation times and linewidths (at the same frequency) for the allowed
spin-phonon transitions.

Let us compare the results for different frequencies. Accordingly
to the Tables 1 and 2 the relaxation rates decrease with increase of
the EPR frequency (due to dependence of the probability as a func-
tion of the energy gap) and, consequently, the width of the lines is
also increasing. At the frequency 108 GHz these lines are on aver-
age four times broader then at 58 GHz. This result is in a reasonable
agreement with the broadening observed in Ref. [70], so spin-
phonon interaction seems to be a significant factor. It should be
noted that the linewidths reported in [70] refer to the absorption
line that, constitutes a superposition of the transition lines shown
in Figs. 5 and 6.

8. Conclusion

To summarize the results of this article, the following key points
are to be mentioned: (1) the model for the spin-phonon coupling
for the V5 cluster is proposed. The model takes into consideration
the modulation of the isotropic and AS exchange interactions with-
in the central V"V triangular spin frustrated layer by the acoustic
lattice vibrations (heat reservoir) for which the Debye law of dis-
persion is assumed; (2) within the pseudo-angular momentum

representation the selection rules for the direct (one-phonon) tran-
sitions between Zeeman levels are established and the specific role
of different contributions to the spin-phonon coupling is eluci-
dated. An important role of the AS exchange in the selection rule
for spin-phonon transitions in spin-frustrated systems is under-
lined; (3) the numerical results are obtained for different of the
field corresponding to the available experimental data on EPR of
V15 (57.9, 108 GHz). As distinguished from the general estimations,
the microscopic approach developed here has allowed to get a de-
tailed information regarding the different direct spin-phonon pro-
cesses within the Zeeman pattern of the low lying spin excitations
in Vys. In fact, the relaxation times for one-phonon transitions
proved to be specific for the different transitions and ranges of
the field. These times for different transitions are estimated as
1072 + 10~*s. The present calculations show that one-phonon pro-
cesses are less important than the thermal fluctuations of the dipo-
lar interactions between the molecules as a source of decoherence
in agreement with the first prediction of coherent states in Vs
[54].

It should be noted that along with the one-phonon processes
another mechanisms of spin-phonon relaxation can play signifi-
cant (or even dominant) role. These are the two-phonon (Raman
type) processes for which the probability can be high due to partic-
ipation of the two phonons whose frequencies (and consequently
phonon densities) are not small as in the case of one-phonon relax-
ation. Additionally the quadratic (with respect to the atomic dis-
placements) terms of spin-phonon coupling are able to give a
significant contribution to the rate of relaxation. The Raman pro-
cesses in Vy5 are expected to be especially important due to the
high density of the excited spin states (dimension of the Hilbert
space is 10'®) virtually involved in the second order processes.
The Orbach type relaxation should also be taken in consideration
with due account for the excited spin states and their detailed Zee-
man structure. We plan to extend the presented model in future
paying special attention to the problem of decoherence in molecu-
lar magnets.
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Appendix I

The operators Vr., in terms of the scalar products of spin
operators:

. 2
Vy= \@(sls2 +5,5;+858)),

1
Vx = —=(5:53 + 8381 — 25,S),
X \/6(23 391 1)
1% —L(SS—SS)
Y—\/j 293 391)-

The operators Wp, in terms of the vector products of spin operators:

Wy = e12[S1 x S3] + €53[S2 x S3] + €31[S3 x §1],
WX = — (812[51 X Sz] + €3 [Sz X S3] — 2931 [53 X S]])7
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Wy = 7(923[52 X 53] — €31 [53 X S]])

where e; denotes the unit vector in direction of the vector f;.
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Appendix Il

The Van Vleck coefficients a, (I'y) for the equilateral triangular
unit are given by the following equations [59]:
ac(Ar) = (1/2)(kRo) (IL + m'M'),
ac(Ex) = —(1/2)(I'L' = m'M’),
ac(Ey) = —(1/2)(kRo) ('M' — m'L’)

where Ry is the side of a triangle, L', M" and N’ are the direction co-
sines of the wave-vector in the coordinate system defined in Fig. 2,
and I', m’,n’ are direction cosines of polarization vector. In the long-
wave Debye approximation x = w/v,. In this approximation the
coefficients |a,(I'y)|* can be averaged over all propagation and
polarization directions. The result is the following:

2 R 1 w’R? 1 w?R?
2 _ 0 2 _ 0 2 _ 0
<al (A1)> =15 7 <a1 (EX)> 15 0 <al (EY)> 15 172
_ 0?R; _ 0?R; _ 0?R;

t

<a?(EY)> - 20 D%
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